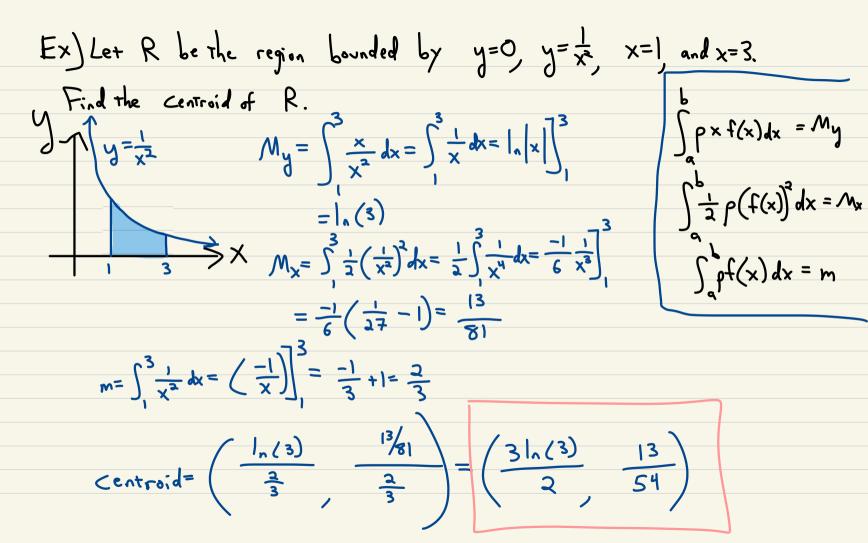
## Math 125D 2/27/24

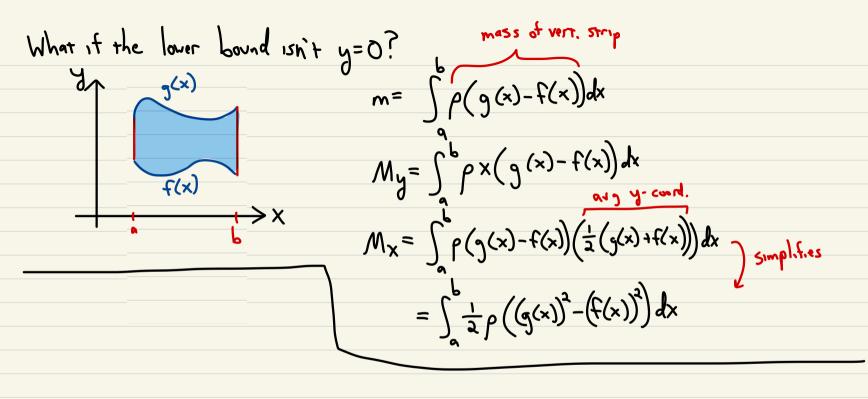


## DFEP #14: Monday, February 26th.

## Compute the centroid of the region bounded by the curves $y = e^x$ , $y = \sin(x)$ , x = 0, and $x = \pi$ .

Chapter 8.3, Continued  
Lost time: 
$$M_y = \mathcal{Z}(mass \cdot x - coord)$$
  $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $C...M = (\bar{x}, \bar{y}) = (\underbrace{M_y}_{m}, \underbrace{M_x}_{m})$   
Haut center of mass of:  
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $C...M = (\bar{x}, \bar{y}) = (\underbrace{M_y}_{m}, \underbrace{M_x}_{m})$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $C...M = (\bar{x}, \bar{y}) = (\underbrace{M_y}_{m}, \underbrace{M_x}_{m})$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass \cdot y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass - y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass - y - y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass - y - y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass - y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{Z}(mass - y - y - coord)$ ,  $T_x = M_y$   
 $M_x = \mathcal{$ 





Chapter 9. ]: Differential Equations  
A differential equation is an equation relation X and/or Y to one or more derivatives 
$$y', y'', etc.$$
  
EX)  $y' = y^{a} + 3x$   $y' + y'' = 2xy$   
 $\int^{s^{1}} order$   $2^{-d} order$   
The order of a diff. eq. is the highest derivative that it uses.  
A solution to a diff eq is an equation only using x & y (no deriv.) which  
satisfies that diff. eq:  
EX]  $Is \quad y = \frac{2}{3}e^{x} + e^{-2x}$  a solution to the diff. eq.  $y' + \partial y = \partial e^{x}$ ?  
 $y' = \frac{2}{3}e^{x} - \partial e^{-dx} \rightarrow Pluy in: ides in unch?$   $(\frac{2}{3}e^{x} - \partial e^{-2x}) + \partial (\frac{4}{3}e^{x} + e^{-2x})^{2} = \partial e^{x}$ 

