Math 125D 1/22/24

Chapters 6.1& 6.2

DFEP #3 Solution:

(a) Set
$$u = \ln(x^2)$$
, $du = \frac{2x}{x^2} dx = \frac{2}{x} dx$.
So $\int \frac{1}{x \ln(x^2)} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln |\ln(x^2)| + C$
(b) Rewrite as $\int e^x e^{e^x} dx$. Then $u = e^x$, $du = e^x dx$ gives:
 $\int e^u du = e^u + C = e^{e^x} + C$.
(c) Let $u = x^2 - 16$, so $x^4 = (u + 16)^2$ so the integral becomes
 $\frac{1}{2} \int_{-16}^{-7} (u + 16)^2 \sqrt[3]{u} du$

Expand to get

$$\frac{1}{2} \int_{-16}^{-7} \left(u^{7/3} + 32u^{4/3} + 256u^{1/3} \right) \, du$$

which is solved easily enough by the power rule:

$$\frac{1}{2} \left[\frac{3u^{10/3}}{10} + \frac{96u^{7/3}}{7} + 192u^{4/3} \right]_{-16}^{-7} \approx -254.1$$

DFEP #4: Monday, January 22nd.

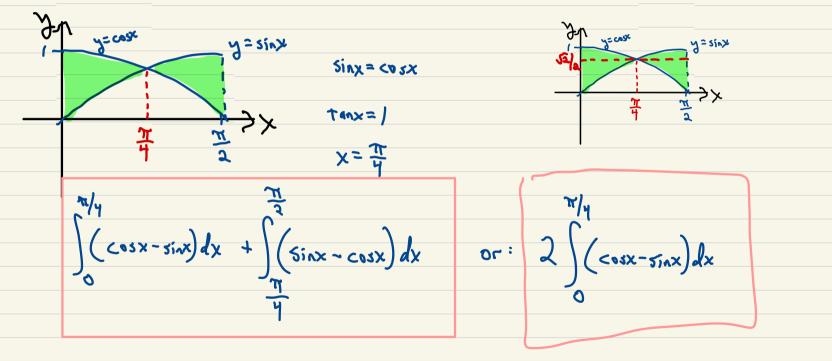
Find a such that the area of the region in the first quadrant bounded by $y = x^3$ and y = ax is 5.

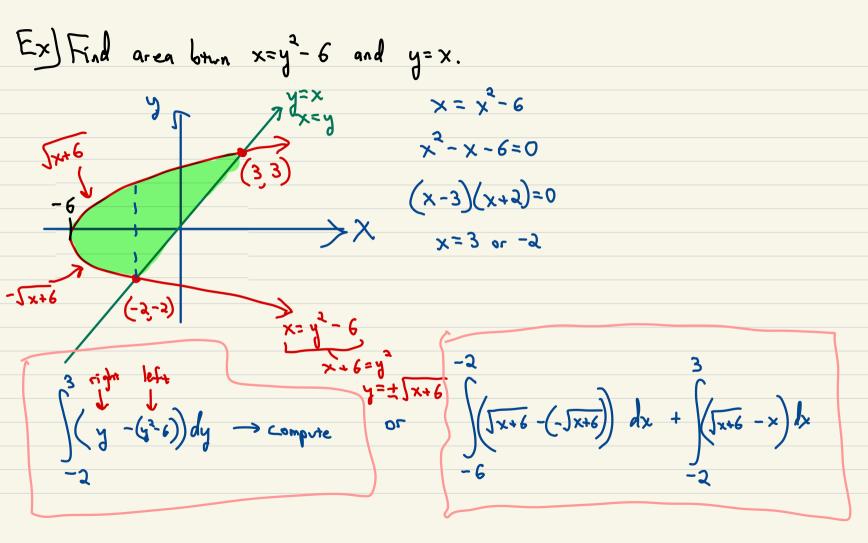
A List of Topics for the First Midterm

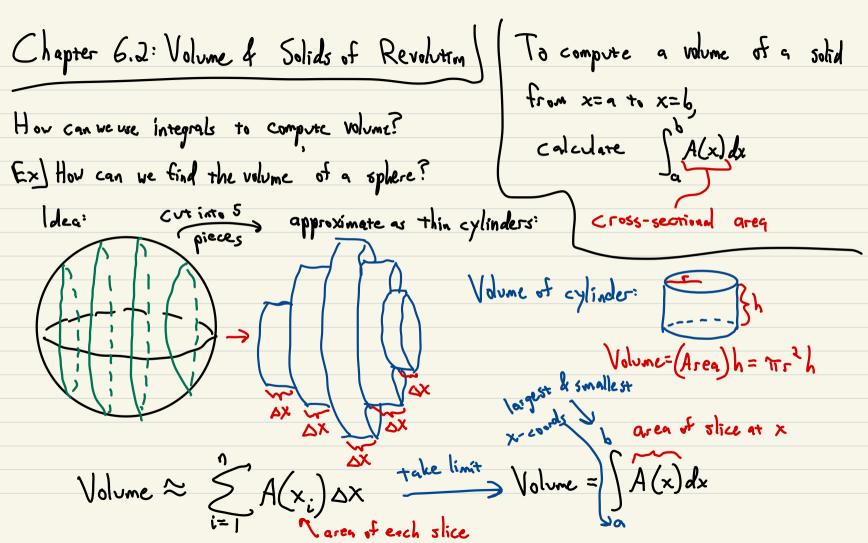
Here's what you should be able to do for the midterm this week.

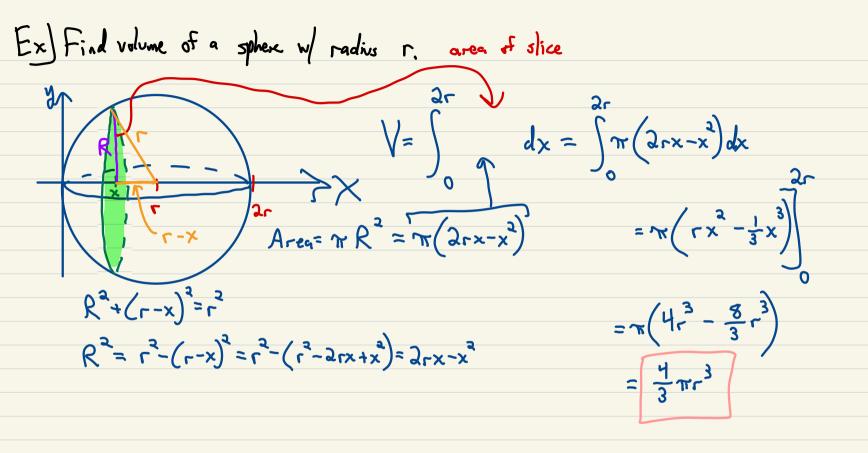
- 1. Riemann sums
 - (a) Compute L_n , R_n , and M_n estimates for areas under curves.
 - (b) Write the (exact) area under a curve as a limit of Riemann sums and (for certain curves) evaluate that limit.
 - (c) Recognize such a limit, convert it to an integral, and compute it.
- 2. Integration
 - (a) Find antiderivatives of certain elementary functions including polynomials, exponential functions, and certain trigonometric functions.
 - (b) Use *u*-substitution to evaluate more challenging integrals.
 - (c) Compute indefinite integrals and definite integrals.
 - (d) Evaluate integrals of odd or even functions on intervals of the form [-a, a].
 - (e) Use the fundamental theorem of calculus to differentiate functions that are defined in terms of integrals.
- 3. Applications
 - (a) Given velocity or acceleration, compute the net displacement of an object over a time interval *or* compute its total distance traveled.
 - (b) Find the area bounded by two or more curves in the plane.

6.1 Continued
EXI Find the grea by
$$y=sinx$$
 and $y=cost$ on the domain $[0, \frac{\pi}{2}]$.









In general, solids of revolution:
Say you take the region under
$$y=f(x)$$
 and above $y=0$ from $x=a$ to $x=b$,
and revolve it around $x=axis$:
The resulting volume is:
The resulting volume is:
 $y=f(x)$ $result$ he $resulting volume is:
 $y=f(x)$ $result$ he $resulting volume is:$$

Explicit volume of cone of height h & rodius r:

$$a = \frac{1}{h} \frac{1}{h}$$