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 Dinner Tables and Concentric Circles:
 A Harmony of Mathematics, Music,
 and Physics*
 Jack Douthett and Richard J. Krantz

 Jack Douthett (douthett@unm.edu) holds two Master of
 Music degrees, one in performance and the other in theory
 and composition, and received his Doctorate of
 Mathematics from the University of New Mexico. He has
 published in the disciplines of mathematics, physics,
 acoustics, and music theory, and in 1993, he and John
 Clough received the Society of Music Theory's Outstanding
 Publication Award for their work on maximally even sets
 and scale theory. He is currently Visiting Professor at the
 University of New Mexico. In his free time, he enjoys hiking
 and visiting art galleries.

 Richard Krantz (krantzr@mscd.edu) is currently a
 Professor of Physics at Metropolitan State College of
 Denver, where he has taught since 1995. He received his
 B.S. from St. Lawrence University in Canton, New York,
 and his M.S. and Ph.D. in physics from Colorado State
 University. His research interests include radiation effects in
 semiconductor devices, musical acoustics, and
 mathematical physics. In 2004 he was awarded his
 department's teaching award. In his spare time, he enjoys
 hiking and snowshoeing.

 About 20 years ago, John Clough, who at that time headed the music theory program
 at SUNY Buffalo, posed two related circle problems. These problems are now known
 as the Dinner Table Problem and the Concentric Circles Problem [6].

 The Dinner Table Problem. Suppose one wishes to seat m men and n women
 around a circular dinner table. How should they be placed so that they are distributed
 "as evenly as possible" around the table?

 The Concentric Circles Problem. Place m white points evenly around one circle,
 and n black points similarly around another circle of the same size. Superimpose the
 circles so that no two points coincide. How can the resulting distribution of points be
 represented?

 By now you may have several questions: What is meant by "as evenly as possible"?
 What do these problems have in common? Why would a musician be interested in

 This paper is dedicated to the memory of John Clough (1928-2003). Without his seminal works in music
 theory and his patient encouragement of others, this work and much of the work referenced herein would never
 have been started, much less completed. The field of mathematical music theory owes a great debt to him, and
 the authors are privileged to have known and worked with him.
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 such seemingly non-musical problems? And in view of the subtitle of this article, you
 may also be wondering how all this relates to physics. The answers to these questions
 come with a theory?now known as the theory of maximally even sets?that began in
 1991 with an investigation of the structure of musical scales [5].

 Dinner tables
 First, we address the meaning of "as evenly as possible." One way to define this is that
 a distribution is "as even as possible" if the average distance between pairs of women
 is as large as possible. Figure 1 shows all relevant configurations (up to rotation and
 reflection) for 3 women (black points) and 4 men (white points) around the unit circle.
 If the idea is to distribute the women as evenly as possible around the table, then the
 distribution in Figure 1(a) is clearly the worst possible choice, since the women are all
 bunched together. The average distance between women (the average of the lengths
 of the dotted edges) in this minimally even distribution is 1.10. Figures 1(b), 1(c), and
 1(d) show a sequence of configurations that gradually distributes the women more and

 more "evenly" around the table. Since the maximum average distance between pairs
 of women is 1.69, Figure 1(d) is optimal.

 Figure 1. All relevant configurations of three women and four men.

 This definition of "as evenly as possible" suggests a second possibility, that the
 average distance between pairs of men is maximum. Still another possible definition is
 that the average pair-wise distance between members of the opposite sex is minimum.
 But how do these definitions of "as evenly as possible" relate?

 In a recent article that generalizes this problem, Douthett and Krantz [6] consid
 ered an s -cycle of m white and n black sites labeled consecutively with the integers
 0, 1, 2, ..., s ? 1. All paths are directed in the direction of the increasing numbers.
 For distinct sites x and y, the length of a path from x to y, denoted dist5(x, _y), is the
 smallest positive integer congruent to y ? x modulo s.

 Next let J be a function, called an interaction, that assigns a weight to dist? (jt, y). If
 the white set W = {w0, w\, ..., wm_i} is the set of white sites, we call any path whose
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 initial and terminal sites are in W a white path. The weight of white set W is the sum
 of the weights of the white path lengths,

 m ? \ m ? \

 ?W(J, s) = ]T ]T J(dists(Wj, Wj+k)) (1)
 k=\ 7=0

 where the subscript j + k is reduced modulo m. Now assume J is a strictly convex
 interaction on [1, s ? 1]. Douthett and Krantz [6] have shown that when the weights
 of all the white sets with cardinality moni sites are compared, the sets with mini
 mum weight are equivalent under rotation (if the interaction is convex but not strictly
 convex, there may be white sets outside this class that also have minimum weight). It
 is these sets that Douthett and Krantz [6] call maximally even sets. It was also shown
 that the complement of a maximally even set is also maximally even and that for such
 a configuration, the sum of the weights of the lengths of the paths whose initial and
 terminal sites differ in color is maximum. Since all three conditions are satisfied si

 multaneously, these configurations are called maximally even configurations.
 It is not difficult to show that an optimal dinner table configuration is a special case

 of Douthett and Krantz's [6] maximally even configurations. The distance between
 persons seated at chairs labeled x and y at a table with s chairs is

 ~ . fir dists(x,y)\
 chord(jc, y) = 2 sin f- J J . (2)

 However, the chord connecting x and y is associated with two paths, the one from x
 to y and the one from y to x. So, (1) sums each chord length twice. We adjust for this
 by defining the chord length interaction as half of (2):

 / . \ 1 . /?r dist5(x, y)\
 7(dist5(x, y)) = -chord(x, y) = sin I - 1 . (3)

 From (1) and (3), we get the average distance between men by summing the chord
 lengths and dividing by the number of chords:

 <t>w(J, s) = ?--Ow(J, s) = ?- > > sin -J--J-- . m(m - 1) m(m - 1) f^ j^ \ s J
 Note that the chord length interaction in (3) is a strictly concave interaction on

 the interval [l, s ? 1]. It follows that the average distance between pairs of men and
 between pairs of women is greatest precisely when the configuration is maximally
 even. Moreover, the average distance between pairs of opposite sexes is least in a
 maximally even configuration. This can be seen in Table 1, where the averages for all
 the configurations in Figure 1 are given.

 Douthett and Krantz [6] also found a convenient way to calculate maximally even
 sets. Let s, m, r, and k be integers such that 1 < m < s, 0 < r < s ? 1, and 0 < k <

 Table 1. Average chord lengths of the configurations in Figure 1.

 Figure 1(a) 1(b) 1(c) 1(d)
 Average between women 1.10 1.46 1.59 1.69
 Average between men 1.28 1.46 1.52 1.57
 Average between opposite sexes 1.64 1.46 1.40 1.34
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 m ? 1. The J-function with these parameters is defined as,

 ks + r
 \_ m _

 where |_-J denotes the floor function. Then the set

 K.m = ft.???, j;,m(D. K,m (2)..... j:.m(? - d}

 is a maximally even set of cardinality m on s sites. The symbol Ysm is called the J
 representation of the set. Conversely, it was shown that every maximally even set has
 a J-representation [6]. The superscript r is called the rotation index, since it determines
 the rotation of the set (this index will be particularly useful when we discuss musical
 scales).

 In Figure 1(d), s = 7, m ? 4, and r = 6. It follows that the set of labels for chairs
 occupied by men is W ? J74 = {1, 3, 5, 6}. Since the complement of a maximally
 even set is also maximally even, the set of labels of the chairs occupied by women also
 has a J-representation; that is, there exists an r, 0 < r < 6, such that the set of labels
 for the chairs occupied by women in Figure 1(d) is J? 3. That necessary value is r = 0.
 It follows that B = f13 = {0, 2, 4}.

 Intuitively, one might expect that if s is divisible by m, then in a maximally even
 configuration the men are spaced evenly around the table. This is in fact the case, and it
 is easy to show this with the J-representations. For simplicity, let j = s/m, and assume
 that the rotation index is r = 0. Then

 PStm = {0,j,2j,...,(m-l)j}.
 It follows that the men are evenly spaced (every yth chair) around the table.

 Concentric circles
 For the Concentric Circles Problem, there is no interaction. So, how does this problem
 relate to the Dinner Table Problem? Suppose that the white and black points around
 the superimposed circles are chairs occupied by the two sexes around a circular table.
 If the chairs are adjusted so they are evenly spaced around the table, then the seating
 configuration is maximally even. Conversely, the evenly spaced chairs in a maximally
 even seating configuration can be adjusted so that same sexes are evenly spaced around
 the dinner table. This is illustrated in Figure 2 for three women and four men, where

 Dinner Table Concentric Circles

 Figure 2. Dinner table and the concentric circles problems.
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 the dinner table is on the left the concentric circles on the right. Note that in both, the
 sets of labels are W = J*4 = {1, 3, 5, 6} and B = J? 3 = {0, 2,4}.

 As with a maximally even configuration, the white and black sets around the super
 imposed circles have J-representations. This was first proved by Clough and Douthett
 [5]; simpler proofs have since been found [6], [10].

 The piano keyboard and diatonic scales
 As we mentioned earlier, the initial work on maximally even sets was done to describe
 musical scale structure [5]. The most obvious connection between maximally even
 configurations and music can be seen on the piano keyboard. Figure 3 shows one
 period (an octave) of the pattern of white and black keys. This pattern of 12 keys
 repeats every octave. The white keys are given the letter names A through G, and the
 black keys take on the name of the left adjacent white key sharped (#) or the right
 adjacent white key flatted (b). For example, the black key between the white keys C
 and D can be called either Cfl (C sharp) or Db (D flat). In music theory, integers,
 called pitch-classes, are often assigned to the notes: 0 to the note C, 1 to C?/Db, 2 to
 D, and so forth. If the keyboard is viewed in terms of pitch-classes, then the section
 of the keyboard in Figure 3 is partitioned into complementary maximally even sets;
 the white-key set is J^21 and the black-key set /f2 5. These sets define musical scales
 known as diatonic and pentatonic scales. The union of these two scales is called the
 chromatic scale. At first glance, it may appear to some that the connection between
 the keyboard and maximally even sets is a coincidence. This is, however, not the case,
 as illustrated by Carey and Clampitt [3] and by Krantz and Douthett [9] in work that
 relates acoustical properties and the construction of musical scales.

 C# Dk

 W = {0,2,4,5,7,9,11} = ^and B = {1,3,6,8,10} = J^
 One octave on the piano keyboard

 Figure 3. The piano keyboard as a maximally even configuration.

 In addition to the white key diatonic scale, every rotation of this scale is also a
 diatonic scale. The class of diatonic scales can be numerically represented as a set of
 J-representations:

 ?J0 T1 J2 T11 1 lJ12,7> J 12,7' J 12,7' ' ' * ' J12,7J *

 An important cycle of diatonic scales in the development of Western music is known
 as the circle of fifths. This is shown in Figure 4 where the musical names of the scales
 are outside the circle and their J-representations inside.
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 C#Major

 E^Major

 B^ Major

 F Major

 E Major

 A Major

 C Major^^^*^^^/p\iBi^^*^^v^ D Major
 G Major

 Figure 4. Circle of fifths, diatonic scales, and their J-representations.

 Adjacent scales are called closely related keys. This is an important cycle in music
 because it is possible to modulate (move) from one scale to a closely related scale by
 changing a single note by a half-step (the smallest musical interval). With respect to
 J-representations, it is possible to move from one set to an adjacent set by changing
 one number by 1. For example, J5ni and J6n 7 are adjacent sets, and it is possible to
 move from J5l21 = {0, 2, 4, 5, 7, 9, 11} to J6n7 = {0, 2, 4, 6, 7, 9, 11} by changing the

 number 5 (in l\21) to 6 (in Jf2,7)- ^n*s relationship is true of all adjacent sets in this
 cycle. Moreover, two scales are closely related if, and only if, the rotation indices of
 their J-representations differ by 1 modulo 12. Clampitt [4] has shown that in general

 gcd(s,m) = l

 Figure 5. Generalized circle of fifths in terms of J-representations.

 208  ? THE MATHEMATICAL ASSOCIATION OF AMERICA

This content downloaded from 
������������205.175.106.17 on Wed, 27 Nov 2024 00:11:03 UTC������������� 

All use subject to https://about.jstor.org/terms



 the sets in a class of sets equivalent under rotation are capable of forming such a cycle
 precisely when the sets are maximally even and s and m are coprime. Figure 5 shows
 this generalized circle of fifths in terms of J-representations.

 Diatonic and pentatonic scales are not the only musical objects that are maximally
 even. For those familiar with musical scales and chords, the augmented triads (m = 3),
 fully diminished seventh chords (m = 4), whole-tone scales (m = 6), and octatonic
 scales (m = 8) are also maximally even sets (jazz musicians often refer to the octa
 tonic scales as diminished scales). In addition, many microtonal theorists (theorists
 who study musical systems with other than twelve divisions to the octave) have scale
 constructions that are maximally even [1], [2]. These scale structures are important to
 many microtonal theorists precisely because of the generalized circle of fifths (see Fig
 ure 5). Those interested in a pedagogical approach to music theory based on maximally
 even sets should refer to Johnson's music theory text [8].

 The 1-dimensional antiferromagnetic Ising model
 The connection between maximally even configurations and physics was first ob
 served by Douthett and Krantz [7]. The link appears in a physics problem known
 as the 1 -dimensional antiferromagnetic Ising model. This model is a 1-dimensional
 lattice of "particles," each having either an up-spin or a down-spin orientation. Figure
 6 shows a section of such a lattice with up-arrows and down-arrows indicating the
 spin orientations. In the antiferromagnetic model, the up- and down-spins behave like

 magnets, where parallel side-by-side orientations (like spins) repel and antiparallel
 side-by-side orientations (opposite spins) attract. Summing the pair-wise interaction
 energy between spins yields the configurational energy of the system. The question
 is, for a given up-spin density (the ratio of up-spins to the total number of spins),

 what configurations yields the minimum average configurational energy? Given the
 subject of this article, you may have already guessed; the configurations are maxi

 mally even. Although the details are a bit more complex, this problem is similar to the
 Dinner Table Problem, except that now the interaction is strictly convex (see [6] for
 details). Thus, maximally even configurations minimize the average configurational
 energy.

 ^ = {0,2,4,5,7,9,ll} = /1527and^ = {l,3,6,8,10} = J1625

 Figure 6. Ising lattice as a maximally even configuration.

 The lattice section in Figure 6 represents one period of such a configuration where
 the up-spin density is 7/12. Note that the set of labels assigned to the up-spins is 7j52 7,
 and to the down-spins is Jf25. These are the same sets that represent the white and
 black keys on the piano keyboard shown in Figure 3. This means that for an up-spin
 density of 7/12 and minimum configurational energy, the configuration of spins in
 the Ising lattice is the same as the configuration of white and black keys on the piano
 keyboard.
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 Coda
 We conclude with Figure 7, which summarizes the content of this paper. The circle on
 the left with seven white points and the circle on the right with five black points are
 superimposed in the inner circle of Figure 7, which illustrates the Concentric Circles
 Problem. Shifting the white and black points so they are evenly spaced gives us the
 dinner table with seven men (white points) and five women (black points) distributed
 as evenly as possible (outside circle). The dinner table is then unwound, illustrating
 the connection between a maximally even seating configuration of seven men and five
 women and the white and black keys on the piano keyboard. Below the keyboard is
 the Ising lattice with an up-spin density of 7/12 and minimum average configurational
 energy that parallels the configuration of white and black keys. In each case, the con
 figuration is maximally even, and the complementary maximally even sets partitioning

 the configurations are J\21 and ^f2,5

 0 1 2 1 4 | 5 | 7 | 9 1 11

 I 1 I 3 II 6 I 8 I 10 4
 0J2|45|7J9{ll

 W = Jns ={0,2,4,5,7,9,11} and B = J^ ={1,3,6,8,10}

 Figure 7. Concentric circles, dinner table, piano keyboard, and the Ising lattice configurations.

 It is intriguing to watch a theory born in music develop as this one has. Although it
 is common to apply tools developed in mathematics to physics and music, it is most
 unusual to borrow tools developed in music theory to explain phenomena in mathe
 matics and physics. The theory of maximally even sets does just this. The fact that this
 theory can be applied to such a variety of situations suggests that it might be applied
 elsewhere. But where?
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 One-Upmanship in Creating Designer Decimals

 James Smoak (jimsmoak@comcast.net), Aurora, CO

 In the last several years, two Classroom Capsules (34:1 (2003) 58-62 and 35:2
 (2004) 125-26), an article (37:5 (2006) 355-363), and a page-filler (38:1 (2007)
 46) have been published in this journal on the topic of designer decimals. These
 are fractions whose decimal expansions begin with a well-known sequence of
 positive integers. For example, when truncated after 194 decimal places,

 10,000/9801 is 1.01 02 03... 96 97.

 This is a special case of the fraction 1027(102" - 2 10" - 1).
 We recently discovered that the simple operation of adding 1 repeatedly to

 the numerator generates nested quotients in arithmetic progressions. If we con
 tinue with our example with n = 2, but successively add m ? 1, 2, and 3 to the
 numerator, we have the following truncated decimals:

 10,001/9801 begins 1.02 04 06... 94 96, and is then 99 followed
 by 01 03 05... 93 95.

 10,002/9801 begins 1.02 05 08 ... 92 95. [After 99, it repeats. Why?]

 10,003/9801 begins 1.02 06 10... 90 94, then is 99 followed
 by 03 07 11... 87 91, then 96 followed by 00 04 08 ... 88 92, then 97
 followed by 01 05 09 ... 89 93.

 Note that the differences in each arithmetic progression for each decimal repre
 sentation is just m + 1,

 We get similar results from adding 1 to the numerator for the Fibonacci family
 of designer fractions, 1027(102" - 10" - 1):

 10,000/9899= 1.01 02 03 05 08 13 21 34...
 10,001/9899= 1.0103 04 07 11 18 29 47...
 10,002/9899= 1.01 04 05 09 14 23 37 60...
 10,003/9899 = 1.01 05 06 11 17 29 46 75 ...
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